Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Determining the genetic architecture of traits involved in adaptation and speciation is one of the key components of understanding the evolutionary mechanisms behind biological diversification. Hybrid zones provide a unique opportunity to use genetic admixture to identify traits and loci contributing to partial reproductive barriers between taxa. Many studies have focused on the temporal dynamics of hybrid zones, but geographical variation in hybrid zones that span distinct ecological contexts has received less attention. We address this knowledge gap by analyzing hybridization and introgression between black-capped and Carolina chickadees in two geographically remote transects across their extensive hybrid zone, one located in eastern and one in central North America. Previous studies demonstrated that this hybrid zone is moving northward as a result of climate change but is staying consistently narrow due to selection against hybrids. In addition, the hybrid zone is moving ~5× slower in central North America compared to more eastern regions, reflecting continent-wide variation in the rate of climate change. We use whole genome sequencing of 259 individuals to assess whether variation in the rate of hybrid zone movement is reflected in patterns of hybridization and introgression, and which genes and genomic regions show consistently restricted introgression in distinct ecological contexts. Our results highlight substantial similarities between geographically remote transects and reveal large Z-linked chromosomal rearrangements that generate measurable differences in the degree of gene flow between transects. We further use simulations and analyses of climatic data to examine potential factors contributing to continental-scale nuances in selection pressures. We discuss our findings in the context of speciation mechanisms and the importance of sex chromosome inversions in chickadees and other species.more » « less
-
Abstract Pouched lamprey (Geotria australis) or kanakana/piharau is a culturally and ecologically significant jawless fish that is distributed throughout Aotearoa New Zealand. Despite its importance, much remains unknown about historical relationships and gene flow between populations of this enigmatic species within New Zealand. To help inform management, we assembled a draft Geotria australis genome and completed the first comprehensive population genomics analysis of pouched lamprey within New Zealand using targeted gene sequencing (Cyt-b and COI) and restriction site-associated DNA sequencing (RADSeq) methods. Employing 16,000 genome-wide single nucleotide polymorphisms (SNPs) derived from RADSeq (n=186) and sequence data from Cyt-b (766 bp, n=94) and COI (589 bp, n=20), we reveal low levels of structure across 10 sampling locations spanning the species range within New Zealand. F-statistics, outlier analyses, and STRUCTURE suggest a single panmictic population, and Mantel and EEMS tests reveal no significant isolation by distance. This implies either ongoing gene flow among populations or recent shared ancestry among New Zealand pouched lamprey. We can now use the information gained from these genetic tools to assist managers with monitoring effective population size, managing potential diseases, and conservation measures such as artificial propagation programs. We further demonstrate the general utility of these genetic tools for acquiring information about elusive species.more » « less
-
Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 Mya. The genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remains largely unknown. Additionally, many populations have drastically declined due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for the leatherback ( Dermochelys coriacea ) and green ( Chelonia mydas ) turtles, representing the two extant sea turtle families. These genomes are highly syntenic and homologous, but localized regions of noncollinearity were associated with higher copy numbers of immune, zinc-finger, and olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odorants greatly expanded in green turtles. Our findings suggest that divergent evolution of these key gene families may underlie immunological and sensory adaptations assisting navigation, occupancy of neritic versus pelagic environments, and diet specialization. Reduced collinearity was especially prevalent in microchromosomes, with greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories starkly contrasted between species, indicating that leatherback turtles have had a low yet stable effective population size, exhibit extremely low diversity compared with other reptiles, and harbor a higher genetic load compared with green turtles, reinforcing concern over their persistence under future climate scenarios. These genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.more » « less
An official website of the United States government
